
RICICLO DELLA PLASTICA

POLIMERI BIODEGRADABILI

Degradabilità dei polimeri

Molti polimeri di sintesi sono sensibili all'azione dei raggi ultravioletti, che determinano la degradazione mediante reazione radicalica della molecola polimerica.

La degradazione fotochimica (=dovuta alla luce) non causa però, a differenza di quella determinata dai microorganismi, la distruzione totale della molecola polimerica, ma porta alla formazione di molecole di peso molecolare intermedio il cui effetto negativo sull'ambiente circostante è talvolta ancora

notevole

Biodegradabilità

I materiali plastici biodegradabili sono caratterizzati dal fatto di degradarsi quasi completamente per azione di microorganismi, quando vengono esposti a fattori ambientali, con conseguente vantaggio per l'ambiente

I polimeri attualmente utilizzati nell'industria non sono però facilmente biodegradabili, in quanto in genere sono ottenuti con elevati pesi molecolari e con strutture molecolari che non consentono la metabolizzazione di tali composti da parte dei microorganismi.

Polimeri biodegradabili

I polimeri biodegradabili si degradano in maniera rilevante nel tempo. Essi si dividono in polimeri parzialmente degradabili e in quelli che si degradano invece completamente.

Tra i primi figurano ad es. prodotti contenenti molecole di amido che vengono attaccate dai microorganismi; il materiale plastico si riduce gradualmente di dimensioni nel tempo, anche se non si degrada completamente.

Tra i secondi figurano polimeri che vengono trasformati in CO₂, H₂O e biomassa per azione idrolitica o di microorganismi, oppure per demolizione ossidativa con formazione di molecole non tossiche e non accumulabili in natura

Alcuni polimeri biodegradabili

- Derivanti dall'amido
- Basati su poliidrossialcanoati (PHA, PHBV, ecc.)
- Basati su acido polilattico (PLA)
- A base di cellulosa (cellophane)
- A base di lignina

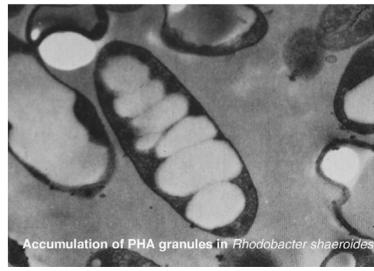
Table 2. Most important types of bio-based polymer groups

Bio-based polymer group	Type of polymer	Structure/Production method
Starch polymers	Polysaccharides	Modified natural polymer
		Bio-based monomer (lactic acid)
Polylactic acid (PLA)	Polyester	by fermentation, followed by
		polymerization
		 Bio-based 1,3-propanediol by
		fermentation plus
		petrochemical terephthalic
		acid (or DMT)
Other polyesters from bio-based intermediates		
 Polytrimethyleneterphthalate (PTT) 		Bio-based 1,4-butanediol by
	12.3	fermentation plus
Olybutyleneterephthalate (PBT)	Polyester	petrochemical terephthalic
2 211 1 2 2 2		acid
 Polybutylene succinate (PBS) 		
		Bio-based succinic acid by
		fermentation plus
		petrochemical terephthalic
		acid
Polyhydroxyalkanoates (PHAs)	Polyester	Direct production of polymer by
	Polyester	fermentation or in a crop
		Bio-based polyol by fermentation
Polyurethanes (PURs)	Polyurethanes	or chemical purification plus
		petrochemical isocyanate
		 Bio-based caprolactam by
		fermentation
Nylon		2 Die besed edinie seid be-
 Nylon 6 		 Bio-based adipic acid by fermentation
2 Marlan 66	Polyamide	Termentation
Nylon 66	Polyamude	3. Bio-based monomer obtained
3. Nylon 69		from a conventional chemical
		transformation from oleic acid
		via azelaic acid
		a)Modified natural polymer
Cellulose polymers	Polysaccharides	b)Bacterial cellulose by
	Pory saccuarines	fermentation

PHA

Tra i polimeri completamente biodegradabili → i poliidrossialcanoati (PHA), biopoliesteri, con circa cento tipi diversi di polimeri

*
$$CH$$
 CH_2 $R = H, CH_3, ..., C_9H_{19}$ $R = H_1$


Da notare che uno di essi, il poliidrossibutirrato (PHB), è noto dal 1925 ed è prodotto in natura da vari tipi di microorganismi che sono anche in grado di demolire la molecola di PHB.

Sintesi di PHA

I PHA si ottengono da CO₂ e H₂O per fotosintesi e indirettamente per fermentazione batterica di zuccheri, specialmente destrosio.

In carenza di alcuni nutrienti (P, N, S) PHA si accumula nei batteri sotto forma di sferette fino a raggiungere il 90% in

peso del batterio secco stesso.

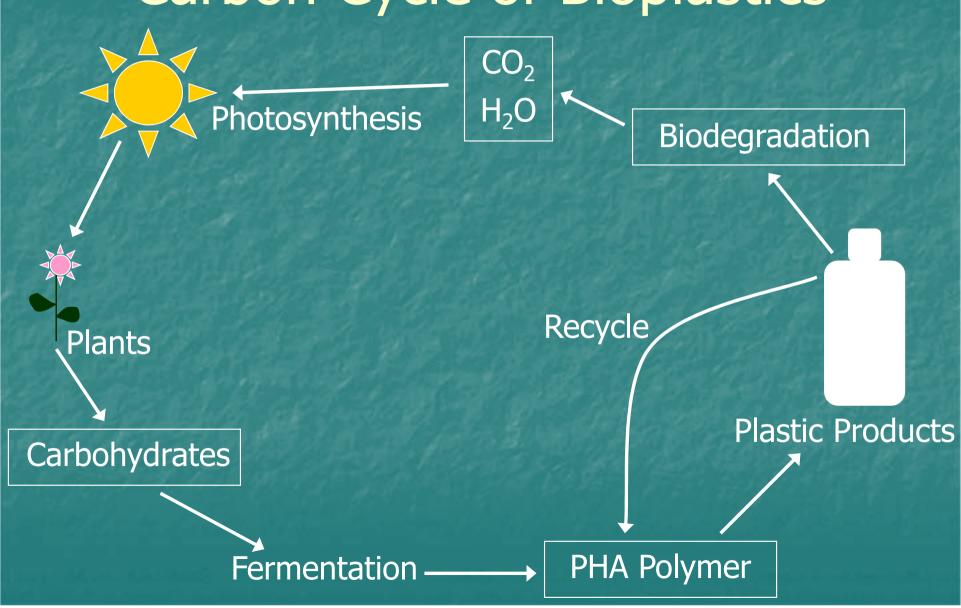
Attualmente la via biotecnologica più sviluppata utilizza tecniche di bioingegneria direttamente su coltivazioni vegetali, indirizzando i precursori chimici alla produzione di

PHA (piante transgeniche).

Attualmente, coltivando 106 ettari di terreno con tali piante è possibile ottenere una produzione di circa 375.000 tonnellate di materia plastica biodegradabile.

Analogamente a quanto avviene per i polimeri industriali tradizionali, i microorganismi portano le molecole dei monomeri in contatto e catalizzano la formazione di PHA per policondensazione con eliminazione di acqua.

I PHA biodegradabili risultanti hanno in genere catene molecolari costituite da 1000 a 10000 unità monomeriche.


La molecola base di un PHA è un 3-idrossiacido, anche se vengono talvolta incorporati nella molecola del polimero anche 4-, 5- e 6-idrossiacidi al fine di ottenere caratteristiche particolari del materiale.

I PHA biodegradabili possono essere lavorati alla pari degli altri polimeri termoplastici. Inoltre possiedono una buona stabilità allo stoccaggio e buona resistenza all'acqua e all'umidità.

Vengono vantaggiosamente impiegati soprattutto nell'imballaggio dei prodotti alimentari e dei prodotti per l'igiene e degli articoli usa-e-getta

Carbon Cycle of Bioplastics

Acido polilattico (PLA)

E' un poliestere termoplastico e biodegradabile di origine vegetale ottenuto con processi di fermentazione e distillazione a partire da amido, principalmente di mais. La storia industriale di questo polimero risale al 1988.

Si possono ottenere polimeri amorfi o semicristallini

Campi di utilizzo: bottigliette per bevande (non frizzanti); piatti, bicchieri e posate monouso al posto del PS; brevetti nel settore tessile

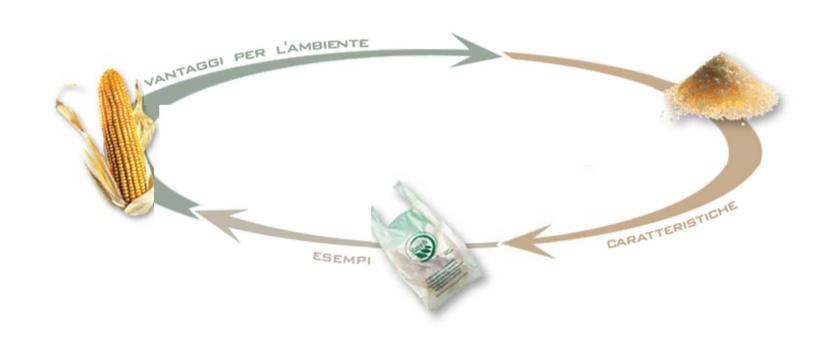
Polivinilalcool (PVA)

Polimero sintetico, assorbe acqua che funge da plasticizzante e lo rende morbido

Completamente e (velocemente) degradabile

Usato in medicina, nell'industria, nel tessile, nell'edilizia

Polimeri derivati da oli vegetali


Dagli oli di soia, palma, ricino e colza possono essere estratti alcuni trigliceridi da usare come monomeri, dopo una serie di reazioni chimiche di funzionalizzazione

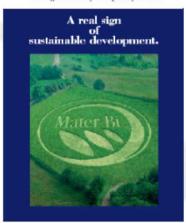
Si possono ottenere poliammidi, polieteri, poliuretani e poliesteri

I processi possono essere costosi e soggetti a stagionalità

I polimeri derivanti dagli oli sono usati come resine, additivi per vernici, materiali per l'edilizia, materiali biomedici, materiali per l'industria automobilistica

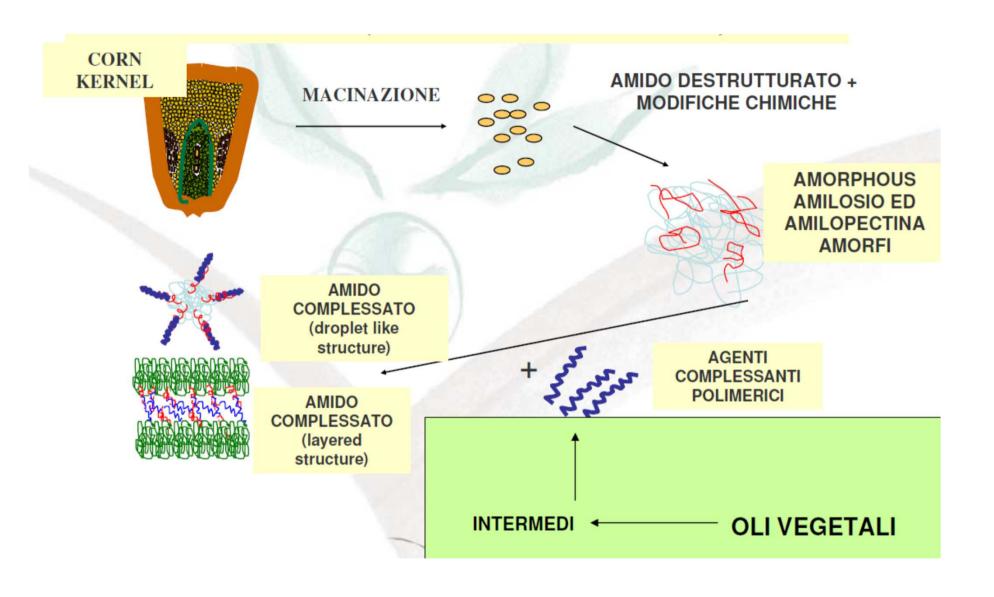
Mater-Bi

Mater-Bi


Un'azienda all'avanguardia nell'utilizzo di materie prime rinnovabili è l'italiana Novamont. Il suo principale prodotto, il Mater-Bi (35000 tonn/anno), è una bioplastica costituita da monomeri derivanti dalla destrutturazione dell'amido di mais non geneticamente modificato.

Il prodotto finito ha proprietà meccaniche simili al polietilene (PE), in particolare comprese tra LDPE e HDPE. E' completamente biodegradabile

Viene utilizzato in campo alimentare e cosmetico; in agricoltura e per i sacchi della raccolta della frazione organica dei rifiuti domestici; come additivo nei pneumatici Goodyear a sostituire il nerofumo



Solanyl

E' un polimero biodegradabile adatto ad ottenere oggetti rigidi stampati. Solanyl[®] si ottiene dall'amido di patata derivante dagli scarti dell'industria alimentare

I vantaggi sono:

Uso di poca energia (65% in meno di quella usata per ottenere il PE)

Materiale totalmente rinnovabile, degradabile e adatto per il

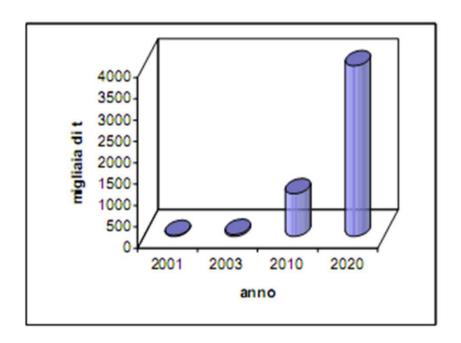
compostaggio

Poliaspartato (TPA)

Con una sintesi termica è possibile ottenere un polimero biodegradabile (poliaspartato) a partire da un amminoacido naturale (acido L-aspartico)

TPA ha proprietà simili al poliacrilato e può essere usato come agente disincrostante nelle tubature e disperdente nei detersivi.

Il poliacrilato non è biodegradabile e si accumula nelle acque


Biograde

Materiale biodegradabile trasparente, a base di cellulosa. Non contiene amido.

Il principale vantaggio è la facilità di lavorazione con le convenzionali linee di estrusione, non richiede quindi modifiche agli impianti tradizionali

Mercato dei polimeri biodegradabili in Europa

The European countries with the highest consumption are Germany, England, France, Italy and the Netherlands