

Fisica Tecnica (Modulo 1)- LM4 Fisica Tecnica – L23

A.A. 2021-2022

Lezione n. 8

Il Principio della TERMODINAMICA Ciclo di Carnot diretto Ciclo di Carnot inverso

I Principio della Termodinamica: Principio di conservazione dell'energia.

Fissa **l'equivalenza formale fra calore e lavoro**, senza porre limitazioni alla possibilità di **trasformare l'una nell'altra**.

$$Q \longleftrightarrow L$$

L'esperienza pratica mostra che le trasformazioni energetiche presentano limiti.

Macchina termica: trasforma ciclicamente calore in lavoro.

Trasformazione **non completa**: una parte del calore disponibile non può essere trasformata in lavoro.

Processo di **scambio termico**: il calore passa spontaneamente sempre **da una sorgente ad un'altra a più bassa temperatura.**

II Principio della Termodinamica: Principio della degradazione dell'energia.

Rispetta l'equivalenza dimensionale fra calore e lavoro (I Principio) ed **impone delle limitazioni** alle trasformazioni energetiche.

Introduce la **non equivalenza operativa** tra energia termica e meccanica.

Enunciato di CLAUSIUS:

"E' impossibile costruire una macchina che operi secondo un processo ciclico il cui unico effetto sia quello di trasferire il calore da un corpo ad una certa temperatura ad uno a temperatura più elevata".

Il calore passa spontaneamente solo da un corpo più caldo ad uno più freddo.

Per ottenere il **risultato inverso necessaria energia meccanica dall'esterno** (es. macchine frigorifero)

L'enunciato di Clausius sta alla base del funzionamento delle macchine a ciclo inverso.

Enunciato di KELVIN-PLANK:

"E' impossibile costruire una macchina che operi secondo un processo ciclico il cui unico effetto sia quello di trasformare in lavoro tutto il calore disponibile da una sorgente a temperatura uniforme e costante nel tempo".

Ogni trasformazione da calore in lavoro non è mai completa (es. calore non sfruttato in una automobile e gettato via con i gas di scarico)

L'enunciato di Kelvin Planck sta alla base del funzionamento macchine a ciclo diretto.

Macchine a ciclo diretto (termiche, motrici)

Enunciato di **Kelvin Planck** → per costruire una macchina termica necessarie **almeno due sorgenti a diversa temperatura**.

Apparente contraddizione all'enunciato di Kelvin-Planck: **espansione isoterma** di un gas ideale in un cilindro-pistone **senza fenomeni dissipativi** con fornitura di calore →

Trasformazione totale in lavoro del calore fornito.

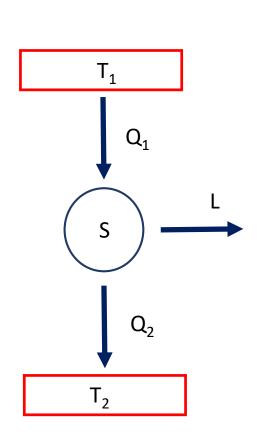
Il processo avviene una sola volta, non è ciclico.

Processi reali irreversibili:

- a) Nel **processo** spontaneo (**diretto**) **diminuisce la possibilità di ottenere l'effetto voluto** (es. trasformazione tra due forme di energia);
- b) Per ristabilire le **condizioni iniziali** attraverso un **processo inverso** è necessario **compiere un'azione**, cioè spendere energia **dall'esterno** (effetto esterno);
- c) Il compimento dei due processi (diretto ed inverso) lascia traccia di sé nell'ambiente circostante.

Cause di irreversibilità:

Squilibrio iniziale (chimico, termico, meccanico);


Presenza di effetti dissipativi (es: attrito, resistenza elettrica, anelasicità...).

Reintegro dell'energia dall'esterno (effetto esterno) per riprodurre le condizioni iniziali.

Ciclo di Carnot DIRETTO

Enunciato di **Kelvin Planck** → **Ciclo diretto** → Macchina termica (motrice): **Calore** → **Lavoro**.

Per il funzionamento ciclico della macchina termica necessarie due sorgenti a temperature diverse, T_1 e T_2 .

Rendimento termodinamico del ciclo:

$$\eta = \frac{L}{O_1}$$
 (Lavoro e calore entrambi positivi)

I Principio della Termodinamica:

$$\Delta U = Q - L \Rightarrow \Delta U = Q_1 - |Q_2| - L$$

Trasformazione ciclica: $\Delta U = 0 \Rightarrow L = Q_1 - |Q_2|$

$$\eta = \frac{Q_1 - |Q_2|}{Q_1} = 1 - \frac{|Q_2|}{Q_1}$$

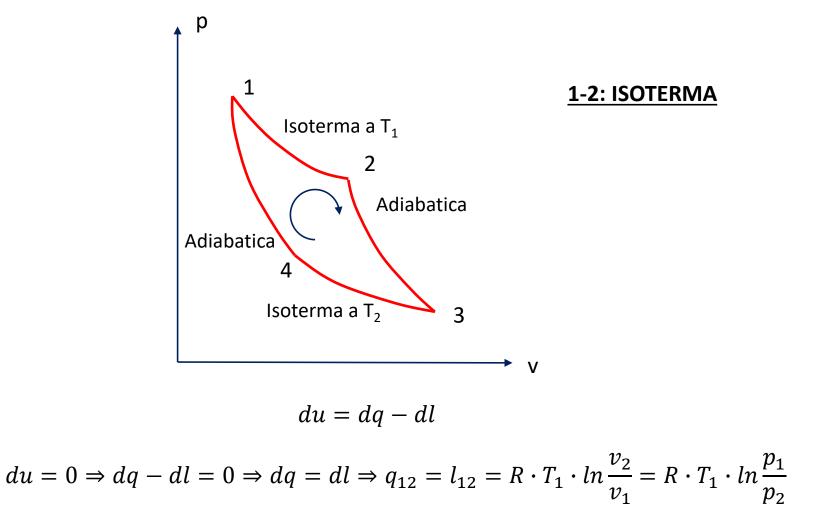
$$\eta = \frac{q_1 - |q_2|}{q_1} = 1 - \frac{|q_2|}{q_1}$$

$$\eta < 1$$

Teorema di Carnot:

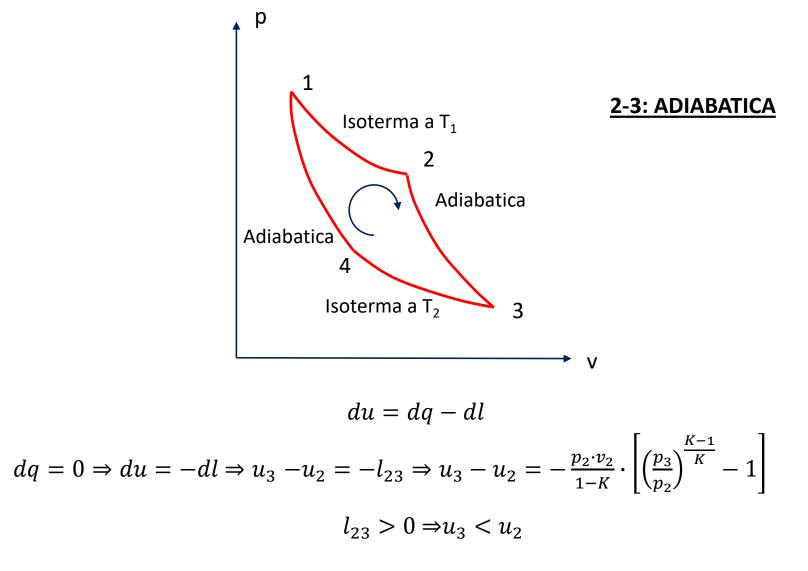
"Il rendimento massimo di una macchina termica che operi ciclicamente tra due sorgenti trasformando calore in lavoro è ottenibile da un ciclo in cui tutte le trasformazioni siano reversibili ed è indipendente dal fluido che compie il ciclo mentre dipende solo dalle temperature delle due sorgenti".

Rendimento massimo indipendente dal fluido \rightarrow gas ideale.

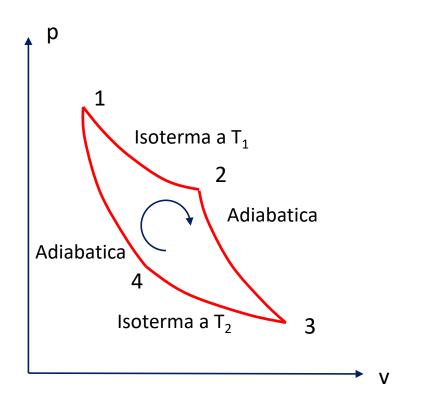

Reversibilità delle trasformazioni → **trascurabili** tutte le **cause di dissipazione**.

Processi di **scambio termico senza differenze di temperature** tra le sorgenti ed il fluido.

Temperature delle sorgenti e del fluido **costanti** nel tempo ed **uguali** tra di loro \rightarrow **scambi termici** solo lungo **trasformazioni isoterme** a temperature uguali a quelle delle sorgenti \rightarrow **due processi isotermi reversibili a T**₁ e T₂ .

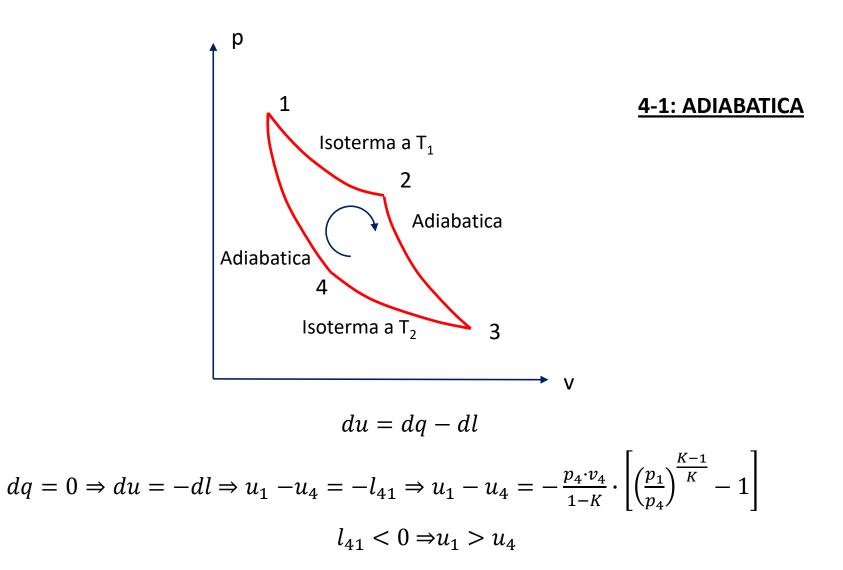

Nelle due trasformazioni che chiudono il ciclo impossibili scambi termici.

Avverrebbero con differenze finite di temperatura (lungo le trasformazioni fluido a temperatura intermedia tra T_1 e T_2) \rightarrow due trasformazioni adiabatiche che consentono di far passare il sistema dalla temperatura T_1 alla T_2 e viceversa.



Il fluido acquisisce calore dalla sorgente a temperatura
$$T_1$$
 ed effettua una espansione a temperatura costante: l'energia assorbita viene sfruttata per produrre lavoro di espansione.

 $q_{12} > 0$ ed $l_{12} > 0$


Il fluido si espande senza scambiare calore con l'esterno e compie lavoro meccanico a spese della sua energia interna che diminuisce provocando un abbassamento di temperatura.

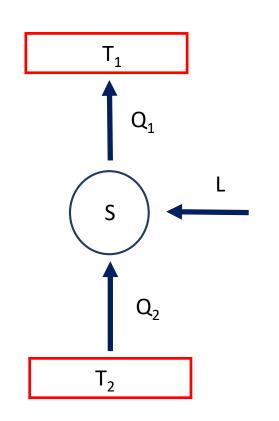
3-4: ISOTERMA

$$du = dq - dl$$

$$du = 0 \Rightarrow dq - dl = 0 \Rightarrow dq = dl \Rightarrow q_{34} = l_{34} = R \cdot T_2 \cdot ln \frac{v_4}{v_3} = R \cdot T_2 \cdot ln \frac{p_3}{p_4}$$

$$q_{34} < 0 \text{ ed } l_{34} < 0$$

Il fluido cede calore alla sorgente a temperatura $\mathbf{T_2}$ ed effettua una compressione a temperatura costante.


Il fluido viene compresso senza scambiare calore con l'esterno e subisce lavoro meccanico che produce un aumento di energia interna provocando un aumento di temperatura.

RENDIMENTO DEL CICLO DI CARNOT DIRETTO

Ciclo di Carnot INVERSO

Enunciato di **Clausius** → **Ciclo inverso** → Macchina frigorifero (operatrice):

Calore da sorgente a bassa temperatura ad una a più alta temperatura mediante apporto di lavoro dall'esterno.

Coefficiente di prestazione COP (di effetto utile o efficienza):

$$\varepsilon = COP = \frac{Q_2}{|L|}$$

I Principio della Termodinamica:

$$\Delta U = Q - L \Rightarrow \Delta U = Q_2 - |Q_1| - (-|L|) = 0$$

Trasformazione ciclica: $\Delta U = 0 \Rightarrow |L| = |Q_1| - Q_2$

$$\varepsilon = COP = \frac{Q_2}{|L|} = \frac{Q_2}{|Q_1| - Q_2}$$

$$\varepsilon = COP = \frac{q_2}{|l|} = \frac{q_2}{|q_1| - q_2}$$

$$\varepsilon \ge 1$$

POMPA di CALORE

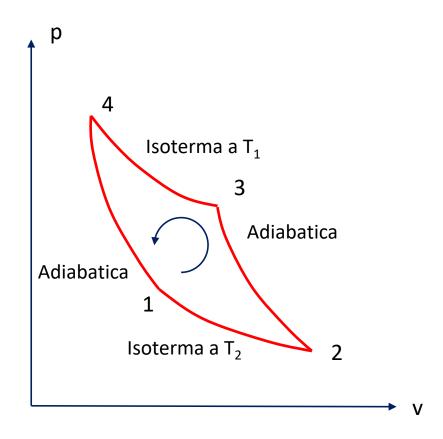
Macchina funzionante secondo il **ciclo inverso** con lo scopo di **fornire calore** ad una **sorgente calda** prelevandolo da una sorgente più fredda.

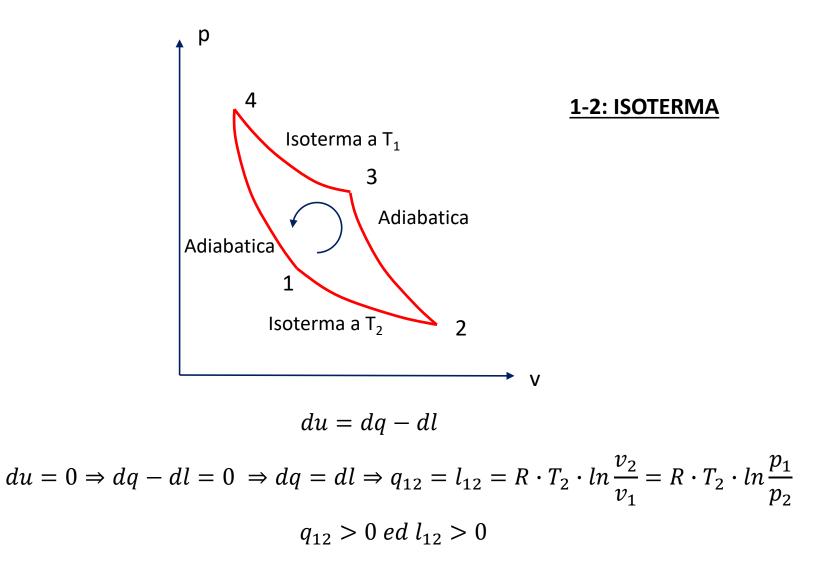
Effetto voluto: calore ceduto alla sorgente calda Q₁

Coefficiente di effetto utile della pompa di calore

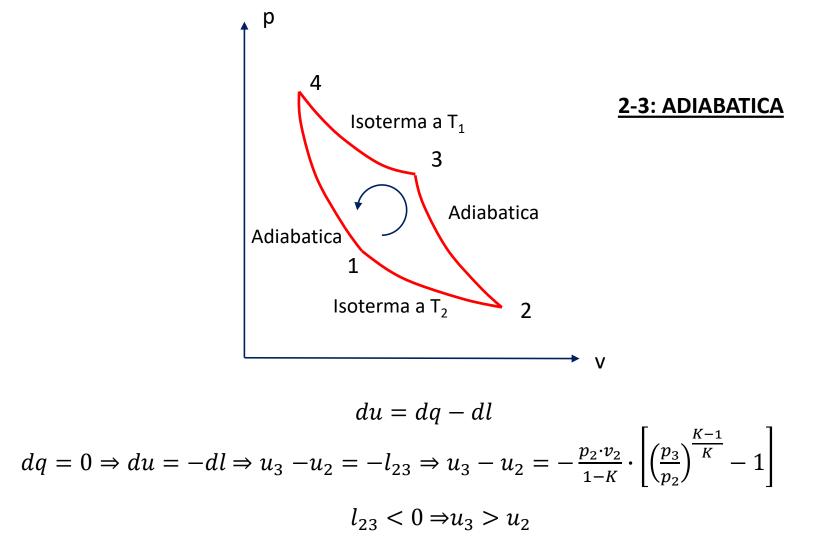
$$\varepsilon' = COP = \frac{|Q_1|}{|L|} = \frac{|Q_1|}{|Q_1| - Q_2}$$
 $\varepsilon' = COP = \frac{|q_1|}{|l|} = \frac{|q_1|}{|q_1| - q_2}$

Relazione tra i coefficienti di effetto utile del frigorifero e della pompa di calore funzionanti secondo lo stesso ciclo

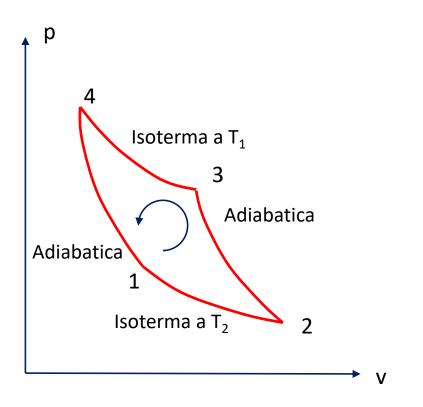

$$\varepsilon' = \varepsilon + 1$$


$$\varepsilon' > 1$$

Per il funzionamento ciclico della macchina frigorifero necessario apporto di lavoro dall'esterno.


Ciclo inverso → trasformazioni percorse in senso antiorario sul diagramma p-v.

Reversibiltà \rightarrow due isoterme e due adiabatiche \rightarrow massime prestazioni ottenibili (teorema di Carnot).



Il fluido acquisisce calore dalla sorgente a temperatura T₂ (effetto frigorifero) ed effettua una espansione a temperatura costante: l'energia assorbita viene sfruttata per compiere l'espansione 1-2.

Il fluido viene compresso subendo lavoro meccanico senza scambiare calore con l'esterno
→ aumento della sua energia interna e conseguente aumento di temperatura.

3-4: ISOTERMA

$$du = dq - dl$$

$$du = 0 \Rightarrow dq - dl = 0 \Rightarrow dq = dl \Rightarrow q_{34} = l_{34} = R \cdot T_1 \cdot ln \frac{v_4}{v_3} = R \cdot T_1 \cdot ln \frac{p_3}{p_4}$$

$$q_{34} < 0 \ ed \ l_{34} < 0$$

Il fluido cede calore alla sorgente a temperatura $\mathbf{T_1}$ ed effettua una compressione a temperatura costante.

Il fluido viene fatto espandere senza scambiare calore con l'esterno producendo una diminuzione di energia interna con conseguente diminuzione di temperatura.

COEFFICIENTE DI EFFETTO UTILE DEL CICLO DI CARNOT INVERSO

$$\varepsilon = COP = \frac{Q_2}{|L|} = \frac{Q_2}{|Q_1| - Q_2} \qquad \varepsilon = COP = \frac{q_2}{|l|} = \frac{q_2}{|q_1| - q_2}$$

$$\begin{cases} q_2 = R \cdot T_2 \cdot ln \frac{p_1}{p_2} \\ |q_1| = R \cdot T_1 \cdot ln \frac{p_4}{p_3} \end{cases} \Rightarrow \varepsilon = \frac{R \cdot T_2 \cdot ln \frac{p_1}{p_2}}{R \cdot T_1 \cdot ln \frac{p_4}{p_3} - R \cdot T_2 \cdot ln \frac{p_1}{p_2}} \end{cases}$$

$$\begin{cases} p_4 \cdot v_4^K = p_1 \cdot v_1^K \Rightarrow \frac{p_4}{p_1} = \left(\frac{v_1}{v_4}\right)^K \Rightarrow p_4 = p_1 \cdot \left(\frac{v_1}{v_4}\right)^K \\ p_2 \cdot v_2^K = p_3 \cdot v_3^K \Rightarrow \frac{p_2}{p_3} = \left(\frac{v_3}{v_2}\right)^K \Rightarrow p_3 = p_2 \cdot \left(\frac{v_2}{v_3}\right)^K \end{cases}$$

$$\begin{cases} \frac{p_4}{p_3} = \frac{p_1}{p_2} \cdot \left(\frac{v_1}{v_2} \cdot \frac{v_3}{v_4}\right)^K = \frac{p_1}{p_2} \cdot \left(\frac{p_2}{p_1} \cdot \frac{p_4}{p_3}\right)^K \Rightarrow \left(\frac{p_4}{p_3}\right)^{1-K} = \left(\frac{p_1}{p_2}\right)^{1-K} \end{cases}$$

$$2 \qquad \frac{p_4}{q_2} = \frac{p_1}{p_2} \Rightarrow \qquad \varepsilon = \frac{q_2}{|l|} = \frac{T_2}{T_1 - T_2} \qquad c. v. d.$$

COEFFICIENTE DI EFFETTO UTILE DEL CICLO DI CARNOT INVERSO

$$\varepsilon' = COP = \frac{|Q_1|}{|L|} = \frac{|Q_1|}{|Q_1| - Q_2} \qquad \varepsilon' = COP = \frac{|q_1|}{|l|} = \frac{|q_1|}{|q_1| - q_2}$$

$$\begin{cases} q_2 = R \cdot T_2 \cdot \ln \frac{p_1}{p_2} \\ |q_1| = R \cdot T_1 \cdot \ln \frac{p_4}{p_3} \end{cases} \Rightarrow \varepsilon' = \frac{R \cdot T_1 \cdot \ln \frac{p_4}{p_3}}{R \cdot T_1 \cdot \ln \frac{p_4}{p_3} - R \cdot T_2 \cdot \ln \frac{p_1}{p_2}} \end{cases}$$

$$\begin{cases} p_4 \cdot v_4^K = p_1 \cdot v_1^K \Rightarrow \frac{p_4}{p_1} = \left(\frac{v_1}{v_4}\right)^K \Rightarrow p_4 = p_1 \cdot \left(\frac{v_1}{v_4}\right)^K \\ p_2 \cdot v_2^K = p_3 \cdot v_3^K \Rightarrow \frac{p_2}{p_3} = \left(\frac{v_3}{v_2}\right)^K \Rightarrow p_3 = p_2 \cdot \left(\frac{v_2}{v_3}\right)^K \end{cases}$$

$$\frac{p_4}{p_3} = \frac{p_1}{p_2} \cdot \left(\frac{v_1}{v_2} \cdot \frac{v_3}{v_4}\right)^K = \frac{p_1}{p_2} \cdot \left(\frac{p_2}{p_1} \cdot \frac{p_4}{p_3}\right)^K \Rightarrow \left(\frac{p_4}{p_3}\right)^{1-K} = \left(\frac{p_1}{p_2}\right)^{1-K}$$

$$\frac{p_4}{p_3} = \frac{p_1}{p_2} \Rightarrow \left[\frac{p_4}{p_3} + \frac{p_1}{p_2} + \frac{p_2}{p_2} + \frac{p_1}{p_2} + \frac{p_1$$